
C++ State Template Class Library
STTCL Concept

Version 2.0 / Mar 17, 2013
Author: Günther Makulik (g-makulik@t-online.de)

mailto:g-makulik@t-online.de

STTCL Concept

Table of Contents
1 Overview..4

1.1 The GoF State pattern...4
1.2 Mapping UML State Machine notation elements...5

2 Implementation Design...14
2.1 Aspect Oriented Modelling of State Machines..15

2.1.1 Composite state aspect...15
2.1.2 Concurrency aspect...16
2.1.3 Direct transition aspect..16

2.2 Configuring the STTCL library...17
2.2.1 Configuring STTCL STL dependency...17
2.2.2 Configuring STTCL builtin concurrency implementations...17
2.2.3 Providing custom implementations for concurrency...18

2.3 STTCL Base Classes...19
2.3.1 sttcl::StateMachine<>..19
2.3.2 sttcl::State<>..21
2.3.3 sttcl::ActiveState<>..22
2.3.4 sttcl::CompositeState<>..25
2.3.5 sttcl::ConcurrentCompositeState<>..27
2.3.6 sttcl::Region<>...28

2.4 STTCL configuration adapters...31
2.4.1 sttcl::internal::SttclThread<>..32
2.4.2 sttcl::internal::SttclMutex<>...33
2.4.3 sttcl::internal::SttclSemaphore<>..33
2.4.4 sttcl::TimeDuration<>..34
2.4.5 sttcl::EventQueue<>..35

3 STTCL Demo applications..36
3.1 Demo1..36
3.2 Demo2..37
3.3 Demo3..38
3.4 Demo3a..40
3.5 Demo3b..41
3.6 Demo4..42
3.7 Demo4a..42
3.8 Demo5..43
3.9 Demo5a..43
3.10 Demo6..43

4 Generation of STTCL State Machines using UML state diagrams...45
4.1 STTCL Sparx Enterprise Architect AddIn..45
4.2 Sparx Enterprise Architect Demo..45

Page 2/47

STTCL Concept

History:

Version Date Changes Author

2.0 02/11/12 Initial version G. Makulik

2.0 02/16/12 Completed chapter 2.3STTCL Base Classes
Added state diagrams for Demo applications

G. Makulik

2.0 03/15/13 Added chapter 4Generation of STTCL State Machines
using UML state diagrams

G. Makulik

Page 3/47

STTCL Concept

1 Overview
The C++ State Template Class Library provides a set of platform independent C++ template classes, that
help to implement finite state machines as they are modeled with UML 2.1 State Machine Diagrams. The
template classes, their attributes and operations provide a certain mapping to the UML notation elements.

The basic approach is based on the GoF State design pattern. The template classes are designed as
base of implementation classes, that mainly concentrate on the problem domain specific functionality.

1.1 The GoF State pattern

The class diagram in Fig 1 shows that the Context class exposes operation() to clients and
internally calls one or more handleEvent() operations of the actual state member. The State class
is abstract, and the state specific behavior is implemented in the ConcreteStateA,
ConcreteStateB, ... classes. Changing the state reference member will change the behavior of a
Context class object, as it would have been replaced with another class.

Page 4/47

Fig 1: The structural UML representation of the GoF State design pattern

Fig 2: GoF State design patten implementation details

STTCL Concept

Fig 2 Shows a refined UML Class Diagram of the GoF State design pattern to depict a proposal for some
implementation details.

1.2 Mapping UML State Machine notation elements

Fig 3 Shows a simple UML State Machine Diagram, that uses basic UML State Machine Diagram notation
elements.

The following table shows how the basic UML State Machine Diagrams notation elements map to the
elements described in the GoF State design pattern:

Page 5/47

Fig 3: Simple sample UML State Machine Diagram

STTCL Concept

UML state machine diagram notation GoF State design pattern
element

The state machine
diagram itself

A Context class instance.

A state (atomic) A State class instance
(ConcreteStateA,
ConcreteStateB).

<Internal event>:= entry, do, exit, <event>

A state internal event. The do event is intrinsically triggered by
the internal enter event.

A call to the State classes
entry(), exit() or do()
operation.

A composite state. The
internal states are
modeled in a sub-state
machine diagram

A State class instance, that also
serves as another Context
classes instance.

Page 6/47

STTCL Concept

UML state machine diagram notation GoF State design pattern
element

A transition between two
states

A call of the
Context::changeState()
operation.

<event>
An event that triggers the associated transition

A call to a public
Context::operation()
operation, that delegates behavior
to a State::handleEvent()
operation.
All events visible in the state
machine diagram can be triggered
via the public
Context::operation()
operations.

[guard]
A conditional expression, that must return true to execute the
associated transition. Guard conditions that are associated to the
same source state must be mutually exclusive.

A conditional statement inside the
Context::operation() or
State::handle() operations,
that decides to call
Context::changeState().

: action, …

A list of specified event triggered operations

The specified action operations are
called inside the implementation
State::handleEvent() event
handler operation1. The calling
order may be unspecified.

1) Action operations that appear on a transition are not allowed to access the contexts current state. In fact these
operations should be performed after the current state was exited and before the new state is entered. That's
difficult to achieve with the GoF State design pattern, since changing state is an atomic operation in the Context
class. Anyway additionl behaviors can be implemented before calling the
sttcl::State<>::changeState() operation.

Page 7/47

STTCL Concept

UML state machine diagram notation GoF State design pattern
element

Separates concurrently
active regions within a
composite state or state
machine diagram.

This requires concurrent program
execution mechanisms (e.g.
threading) supported by an
operating system.
Each region defines an associated
State class reference, to delegate
the event handling to a
State::handleEvent()
operation concurrently.

A single region can also be
considered as a concrete
composite state implementation,
that supports a non blocking
State::do() operation, that
executes asynchronously in a loop.
Further it is necessary to have a
mechanism to propagate events to
the asynchronously executed
operation loop.
STTCL provides the
ConcurrentCompositeState<>
and Region<> template base
classes to design these UML
features.

Table 1: Basic UML State Machine Elements

Page 8/47

STTCL Concept

There’s a number of advanced UML State Machine Diagram notation elements, that do not directly map
to any conceptual element described in the GoF State design pattern. These can be mapped to certain
aspects of implementation and behavior though.

This mainly concerns the so called pseudo-states, that also have incoming and/or outgoing transitions.
But vs. concrete states, pseudo-states only a kind of transient states, that represent complex or intrinsic
transition paths in a state machine diagram or composite state.

The following table lists possible implementation approaches for further UML State Machine Diagram
notation elements:

Page 9/47

STTCL Concept

UML state machine diagram notation GoF State design pattern
implementation

Pseudo-States

An entry point of the state
machine diagram. Initial
pseudo-states never have
the target role of a
transition.

A constructor call to create a
Context class instance in the
simplest case. The constructor
calls the
Context::changeState()
operation to set the initial State
reference.

If any events and/or guards are
specified for the associated
outgoing transitions, the Context
class should provide a property
attribute to check it's initialization
status, and leave the decision,
which initial State reference to
set, to the associated
Context::operation() event
operations. This behavior may be
encapsulated in a
Context::initialize()
operation.

An exit point of the state
machine diagram. Final
pseudo-states never have
the source role of a
transition.

A State class implementation, that
never calls the
Context::changeState()
operation.

An exit point of a state
machine or composite state
triggered by the incoming
transition's event.

A Context::finalize()
operation, that calls the actual
State references exit()
operation.

Exits the composite state
or state machine triggered
by the incoming transition's
event.

A destructor call to a Context
class instance in the simplest case.

Page 10/47

STTCL Concept

UML state machine diagram notation GoF State design pattern
implementation

Represents the most
recent active configuration
of a composite state. In
opposite to the shallow
history pseudo-state, this
includes all sub states of all

regions and their recently active sub states recursively.

The composite Context class
instance must keep track of the
most recent sub State reference,
when the composite State classes
exit() operation is called.
When the composite State
classes enter() operation is
called later on, the composite
Context class directly transits to
the remembered most recent sub
State reference.

STTCL composite state classes
provide the HistoryType template
parameter to determine the history
behavior.

Represents the most
recent sub state of a
composite state. A
composite state can have
at most one history

pseudo-state. At most one transition to the default sub state may
originate the history pseudo-state. This transition is executed in
case the composite state was never active before.

The same behavior as described
for the deep History. But In case,
that a reentered sub State
reference also represents a
composite state, it's composite
Context class must be
(re-)initialized.

STTCL composite state classes
provide the HistoryType template
parameter to determine the history
behavior.

A Fork. Serves to split a
single incoming transition
into concurrently executed
outgoing transitions. No
guards are allowed on any
associated transitions.

A fork represents the initiation of
concurrently executed operations
(i.e. tasks, threads) of a composite
Context class.
This can be implemented as a non
blocking operation that starts all of
the associated concurrently
executed operations.

Page 11/47

STTCL Concept

UML state machine diagram notation GoF State design pattern
implementation

A Join. Serves to
synchronize multiple
concurrently executed
incoming transitions into a
single outgoing transitions.
No guards are allowed on
any associated transitions.

A join represents a synchronization
point (i.e. semaphore, mutex) for
formerly initiated concurrently
executed operations of a
composite Context class.
This can be implemented in a
blocking operation, that waits on
completion of all the associated
concurrently executed operations.

A Choice. Serves to select
the outgoing transitions
according runtime
conditions represented by
the guards, associated to
them. The guard conditions
must be mutually
exclusive, to choose a
certain transition path. The
model requires at least one

of the guard conditions to evaluate to true, therefore one of the
outgoing transitions should cover the else/default case.
Unlike the Fork pseudo-state, a Choice node doesn't initiate any
concurrently executed transitions.

A Choice can be implemented as a
if ...else if ..else or
switch conditional block in a
State classes implementation
(ConcreteStateA,
ConcreteStateB)., that choose
the appropriate target State
reference parameter for a call to
the Context::changeState()
operation.

Note:
Choices don't serve to split
transition paths into concurrently
executed operations!

A Merge. Serves to
combine alternate
execution flows into a
single outgoing transition.
Unlike the Join pseudo-
state, a Merge node
doesn't provide
synchronization of
concurrently executed
transitions, that originate

from different regions. Also a Merges incoming transitions may
have guard conditions associated.

A Merge can be implemented as
an operation, that is shared by a
number of State class
implementations
(ConcreteStateA,
ConcreteStateB), and ends up in
a single call of
Context::changeState()
operation. The decision to call this
operation is done in the
implementation of the
State::handleEvent()
operation, according the
associated guard condition.

Page 12/47

STTCL Concept

UML state machine diagram notation GoF State design pattern
implementation

A Junction. Serves to
share transition paths for
the incoming transitions.
The incoming and or
outgoing transitions have
guard conditions
associated. Incoming
transitions are shared
between the source states.
Outgoing transitions must

have mutually exclusive guard conditions. The model requires at
least one of the guard conditions to evaluate to true, therefore
one of the outgoing transitions should cover the else/default case.

The Junction serves complex
conditional path transitions that can
be implemented in a similar way as
the Choice and Merge pseudo-
states.
UML 2.1 specification restricts the
guard conditions to be static
(actively waiting for all incoming
events). IMHO this can be
interpreted, that the Junction node
should be another implementation
of the State class. Such
implementation should not affect
the Context classes attributes, but
just serve to forward incoming
events to outgoing transitions (i.e.
Context::changeState() calls).

Table 2: Advanced UML State Machine Elements

Page 13/47

STTCL Concept

2 Implementation Design

The basic implementation approach of the C++ STTCL is, to provide abstractions of the GoF State
design patterns static structures. This is accomplished using parameterized base classes that serve
certain functionality, associated to the formerly listed UML State Machine Diagram notation elements.

The Context::operation() and State::handleEvent() operations, described in the design
pattern, can be considered as a pair of compliant, application specific interfaces (source/sink).

The interface realized by the Context class is visible to any clients of the state machine implementation.
The interface realized by the State class implementations, and those implementations themselves,
shouldn’t be visible to any clients of the state machine implementation.

Fig 4 Shows a class diagram, that illustrates a state machine implementation that uses the STTCL basic
classes. The highlighted elements represent the application specific stuff.

Page 14/47

Fig 4: The basic STTCL State design pattern abstraction

STTCL Concept

The State<> template base class will provide certain common state specific operations, like entry(),
exit() and do(). These operations are not intended to be called by the implementation classes, but
rather by the corresponding StateMachine class. The State class also provides a protected operation
changeState(), that will delegate to a call to the StateMachineImpl context parameters
StateMachine<>::changeState() operation. This operation enables the concrete state
implementations, to implement transitions to another concrete state. As formerly stated, the
StateMachine<>::changeState() operation shouldn’t be directly accessible for any client (or
actor) classes of the state machine. This requires, that the State<>::changeState() operation is
allowed to friendly access the StateMachine<>::changeState() operation.

The StateMachine<> class mainly serves to implement the transitions’ behavior, when they are
enabled and passed the guard conditions implemented in a concrete state. This concerns control of the
exited and entered state’s synchronous and asynchronous execution behavior.

As discussed in the GoF State design pattern, the concrete state implementations may provide singleton
instances (accessible though a static operation of the class), as far no state runtime attributes need to be
maintained. This approach will guarantee, that the StateMachine<> implementation doesn’t need to
reference concrete State<> implementations, other than it’s initial state.

2.1 Aspect Oriented Modelling of State Machines
STTCL uses aspect oriented design for certain aspects of UML 2.2 state diagram notation elements.
The different aspect variations are selected through template parameters and concern the
following:

• Composite states (aka HSM, hierarchical state machines)
• State history behavior

• Concurrency
• Active states
• State Machine regions

• Direct transitions

2.1.1 Composite state aspect
A composite state can be implemented as a merge of sttcl::StateMachine<> and
sttcl::State<> class. But composite states also introduce the aspect of state history behaviour.
There are three behaviors defined by UML 2.2:

• No state history, the sub state machine is initialized every time, when the composite state is
entered.

• Deep state history, the sub state machine directly transits to the last remembered state, this
is applied recursively for further contained composite states.

• Shallow state history, the sub state machine directly transits to the last remembered state,
further contained composite states are initialized.

STTCL provides the sttcl::CompositeState<> and sttcl::Region<> template base classes that
support selecting a state history behavior implementation. As value for the HistoryType template
parameter choose one of the sttcl::CompositeStateHistoryType enum values Deep or Shallow
to implement a pseudo-state for the history, or None to have no pseudo-state.

Page 15/47

STTCL Concept

2.1.2 Concurrency aspect
UML 2.2 state diagrams have several notation elements that model orthogonal state transition paths.
That means that operations that appear on forked transition paths should be executed concurrently
in separate threads. Also state internal do actions may execute “in background” as long the state is
active (though UML 2.2 does not specify a special notation for that case).

The latter aspect is supported by the sttcl::ActiveState<> template base class. The ActiveState
class implements a background thread loop, that calls a specified do operation. The do operation is
called either once, cyclically with a specified frequency or cyclically non blocking.

Orthogonal states and transition paths are supported by the sttcl::ConcurrentCompositeState<>
and sttcl::Region<> template base classes.

The ConcurrentCompositeState class effectively implements a fork to all contained Region
composite states, and dispatches incoming event triggers to the region threads.

To dispatch events in the Region template base class, the sttcl::SttclEventQueue<> class is
used by default, you may specify your own event queue implementation using the EventQueueType
template parameter.

2.1.3 Direct transition aspect
With UML 2.2 transition notation event triggers are optional. If a transition has no triggers we'll call it
a direct transition here (the UML 2.2 spec calls these Completion transitions). Following the GoF
state pattern, state transitions are usually triggered using the event handler methods of the state
interfaces, but with direct transitions there's no such event handler method available.

The UML 2.2 superstructure specification says in section '15.3.14 Transition (from
BehaviorStateMachines)':

Completion transitions and completion events

A completion transition is a transition originating from a state or an exit point but which does not
have an explicit trigger, although it may have a guard defined. A completion transition is
implicitly triggered by a completion event. In case of a leaf state, a completion event is generated
once the entry actions and the internal activities (“do” activities) have been completed. If no
actions or activities exist, the completion event is generated upon entering the state. If the state is
a composite state or a submachine state, a completion event is generated if either the submachine
or the contained region has reached a final state and the state’s internal activities have been
completed. This event is the implicit trigger for a completion transition. The completion event is
dispatched before any other events in the pool and has no associated parameters. For instance, a
completion transition emanating from an orthogonal composite state will be taken automatically
as soon as all the orthogonal regions have reached their final state.

If multiple completion transitions are defined for a state, then they should have mutually
exclusive guard conditions.

This means effectively that direct transitions are implicitly triggered whenever the state do actions
are completed. The sttcl::State<> and sttcl::ActiveState<> template base classes provide the

Page 16/47

STTCL Concept

overridable method checkDirectTransitionImpl() that is called directly after the doAction (if there
is any) returns. This callback method should return the next state that is connected with any direct
transitions, if null is returned there's no direct transition executed. Additionally you can specify if
there's a direct transition going to the containing state machine's final pseudo-state, a null must be
returned for the next state in this case.
Checking guard conditions should naturally appear in the overridden implementation of this method.

2.2 Configuring the STTCL library

The concurrency features need some OS specific implementation for threads, mutexes, semaphores
and “real” timing capabilities.
STTCL provides builtin concurrency support for certain build environments, currently no OS specific
implementations are available. The builtin environments are:

• boost, using the boost/thread, boost/interprocess and boost/date_time libraries
• POSIX, using the pthread library and POSIX time API
• c++11, using the C++ 11 standard library functions

Additionally some implementations rely on the C++ standard template libraries by default. Currently
the following STL classes are used:

• std::deque<T>

2.2.1 Configuring STTCL STL dependency
Some classes in the STTCL library use the C++ STL for implementation of container classes and
other standard constructs. To enable the use of the STL classes you must set the STTCL_USE_STL
define (add -DSTTCL_USE_STL to your compiler flags).

If you want to introduce your own implementations omit the STTCL_USE_STL define and define the
following macros to replace particular STL default classes:

#define STTCL_DEFAULT_DEQUEIMPL(__T__) MyDequeImpl<__T__>

2.2.2 Configuring STTCL builtin concurrency implementations
STTCL uses wrapper classes (adapters) for the environment specific implementations of the above
mentioned capabilities:

• sttcl::SttclThread<> as thread adapter
• sttcl::SttclMutex<> as mutex abstraction (needs timed/unblocking try_lock()

implementation)
• sttcl::SttclSemaphore<> as semaphore abstraction (needs timed/unblocking try_wait()

implementation)
• sttcl::TimeDuration<> as abstraction for a “real”-time duration
• sttcl::SttclEventQueue<> as abstraction for a thread safe event queue

To use the builtin implementations you need to build the STTCL source files using one of the
following defines (add -D<config> to your compiler flags):

• STTCL_BOOST_IMPL to select the boost implementation as default
• STTCL_POSIX_IMPL to select the POSIX implementation as default
• STTCL_CX11_IMPL to select the C++ 11 standard implementation as default

Page 17/47

STTCL Concept

2.2.3 Providing custom implementations for concurrency
You may implement your own abstractions for threads, mutexes, semaphores and time duration
representation. Provide the following defines to set your custom implementation as defaults (these
must be seen by the STTCL header files):

#define STTCL_DEFAULT_THREADIMPL MyThreadImpl
#define STTCL_DEFAULT_MUTEXIMPL MyMutexImpl
#define STTCL_DEFAULT_SEMAPHOREIMPL MySemaphoreImpl
#define STTCL_DEFAULT_TIMEDURATIONIMPL MyTimeDurationImpl

.Alternatively you can provide your implementations directly as template parameters of the STTCL
template base classes.

Page 18/47

STTCL Concept

2.3 STTCL Base Classes
The STTCL template base classes provide default implementations for standard state machine
context and state behavior. The behavioral aspects may be overridden by the implementation class
that is passed as template parameter. The methods called to implement behavioral aspects are
designed as implementation hooks, such that the base class implements a default behavior and
the specific method is called using a static cast to the implementation class.

2.3.1 sttcl::StateMachine<>

The StateMachine template class serves as base class for the top level state machine
implementation. The IState template parameter specifies the event handler interface of the State
implementation classes to appear in the state diagram. This interface can be called in the
StateMachine implementation, to realize triggering events.

Template signature:
template<class StateMachineImpl, class IState>
class StateMachine;

StateMachineImpl specifies the inheriting class.
IState specifies the internal state interface class.

Page 19/47

Fig 5: sttcl::StateMachine<> class diagram

STTCL Concept

The StateMachine<> template base class implements the following main operations:

+initialize()
Sets the state machine to its initial state.
+finalize()
Exits the state machines current state and resets the state machine.
+getState()
Gets the state machines current state.
#changeState()
Changes the state machines current state.

Implementation hooks:
+initializeImpl()
Overrides the default initialize() behavior. An override should call the default implementation.
+finalizeImpl()
Overrides the default finalize() behavior. An override should call the default implementation.
+getInitialStateImpl()
Must be implemented. Returns the initial state of the state machine implementation.

Page 20/47

STTCL Concept

2.3.2 sttcl::State<>

The State template class serves as base class for any state that appears in the state machine
implementation specified with the StateMachineImpl parameter. Implementation classes must

Page 21/47

Fig 6: sttcl::State<>, sttcl::ActiveState<>, sttcl::ConcurrentCompositeState<> class diagram

STTCL Concept

implement the event handler interface specified with the IState template parameter.

Template signature:
template<class StateImpl,class StateMachineImpl,class IState>
class State;
StateImpl specifies the inheriting class.
StateMachineImpl specifies the containing state machine implementation.
IState specifies the internal state interface class.

The sttcl::State<> template base class implements the following main operations:
-entry()
Called when the state is entered.
-startDo()
Called when the state's do action is called.
-endDo()
Called when the state's do action should be terminated.
-exit()
Called when the state is left.
-initSubStateMachines()
Called to initialize a state's sub state machines.
-finalizeSubStateMachines()
Called to finalize a state's sub state machines.

Implementation hooks:
+entryImpl()
Overrides the default entry() behavior. An override should call the default implementation.
+startDoImpl()
Overrides the default startDo() behavior. An override should call the default implementation.
+endDoImpl()
Overrides the default endDo() behavior. An override should call the default implementation.
+exitImpl()
Overrides the default exit() behavior. An override should call the default implementation.
+initSubStateMachinesImpl()
Overrides the default initSubStateMachines() behavior. An override should call the default
implementation.
+finalizeSubStateMachinesImpl()
Overrides the default finalizeSubStateMachines() behavior. An override should call the default
implementation.
+checkDirectTransitionImpl()
Overrides the default checkDirectTransitionImpl() behavior. An override should call the default
implementation.

2.3.3 sttcl::ActiveState<>
The ActiveState template class serves as base class for any state with a asynchronously executing
do action that appears in the state machine implementation specified with the StateMachineImpl
parameter. Implementation classes must implement the event handler interface specified with the
IState template parameter.
The do action that is specified in the constructor can either be executed once, with a particular

Page 22/47

STTCL Concept

frequency or may use its own synchronization mechanisms for asynchronous execution.

Template signature:
template
< class StateImpl
, class StateMachineImpl
, class IState
, class StateThreadType
, class TimeDurationType
, class EndDoActionSemaphoreType
, class ActiveStateMutexType
>
class ActiveState;
StateImpl specifies the inheriting class.
StateMachineImpl specifies the containing state machine implemetation.
IState specifies the internal state interface class.
StateThreadType specifies the thread class to implement the internal state thread.
TimeDurationType specifies the time duration representation implementation class.
EndDoActionSemaphoreType specifies the semaphore class to implement the semaphore that is
used to signal termination of the internal state thread.
ActiveStateMutexType specifies the mutex class used to provide thread safe access to the
sttcl::ActiveState<> class member variables.

The sttcl::ActiveState<> template base class implements the following main operations:
-entry()
Called when the state is entered.
-startDo()
Called when the state's do action is called.
-endDo()
Called when the state's do action should be terminated.
-exit()
Called when the state is left.
-initSubStateMachines()
Called to initialize a state's sub state machines.
-finalizeSubStateMachines()
Called to finalize a state's sub state machines.

Implementation hooks:
+entryImpl()
Overrides the default entry() behavior. An override should call the default implementation.
+startDoImpl()
Overrides the default startDo() behavior. An override should call the default implementation.
+endDoImpl()
Overrides the default endDo() behavior. An override should call the default implementation.
+exitImpl()
Overrides the default exit() behavior. An override should call the default implementation.
+initSubStateMachinesImpl()
Overrides the default initSubStateMachines() behavior. An override should call the default

Page 23/47

STTCL Concept

implementation.
+finalizeSubStateMachinesImpl()
Overrides the default finalizeSubStateMachines() behavior. An override should call the default
implementation.
+checkDirectTransitionImpl()
Overrides the default checkDirectTransitionImpl() behavior. An override should call the default
implementation.
+exitingDoActionImpl()
Overrides the default exitingDoActionImpl() behavior. This callback signals that the do action
execution has finished (Completion event).
+joinDoActionThreadImpl()
Overrides the default joinDoActionImpl() behavior. This callback implements the synchronization
point for the internal do action thread and the states outgoing transition. An override should call the
default implementation.
+unblockDoActionImpl()
Overrides the default unblockDoActionImpl() behavior. This callback allows an implementation to
unblock the internal do action thread and proceed with the states outgoing transition.

Page 24/47

STTCL Concept

2.3.4 sttcl::CompositeState<>

The CompositeState template class serves a base class for a composite state implementation. As
the diagram in Fig 7 shows the CompositeState class inherits from both sttcl::StateMachine<>
and sttcl::State<> class and thus their behaviors.

Template signature:
template
< class CompositeStateImpl
, class StateMachineImpl
, class IInnerState
, sttcl::CompositeStateHistoryType::Values HistoryType
, class StateBaseImpl
, class StateMachineBaseImpl
>
class CompositeState;

StateImpl specifies the inheriting class.

Page 25/47

Fig 7: Class diagram for sttcl::CompositeState<>

STTCL Concept

StateMachineImpl specifies the containing state machine implemetation.
IInnerState specifies the internal state interface class.
HistoryType optionally specifies a history pseudo-state.
StateBaseImpl optionally specifies a sttcl::State<> implementation base class.
StateMachineBaseImpl optionally specifies a sttcl::StateMachine<> implementation base class.

The sttcl::CompositeState<> template base class implements the following main operations:
#initSubStateMachines()
Called to initialize a state's sub state machines.
#finalizeSubStateMachines()
Called to finalize a state's sub state machines.
#changeState()
Called to change the containing state machines next state.
+changeState()
Called to change the internal state machines next state.
+subStateMachineCompleted()
Called to notify the implementation class that the CompositeState state machine is finalized.

Additionally the main operations of the StateBaseImpl and StateMachineBaseImpl template
parameter classes are inherited.

Implementation hooks:
+entryImpl()
Overrides the default entry() behavior. An override should call the default implementation.
+startDoImpl()
Overrides the default startDo() behavior. An override should call the default implementation.
+endDoImpl()
Overrides the default endDo() behavior. An override should call the default implementation.
+exitImpl()
Overrides the default exit() behavior. An override should call the default implementation.
+initSubStateMachinesImpl()
Overrides the default initSubStateMachines() behavior. An override should call the default
implementation.
+finalizeSubStateMachinesImpl()
Overrides the default finalizeSubStateMachines() behavior. An override should call the default
implementation.
+checkDirectTransitionImpl()
Overrides the default checkDirectTransitionImpl() behavior. An override should call the default
implementation.
+subStateMachineCompletedImpl()
Overrides the default subStateMachineCompleted() behavior. An override should call the default
implementation.

Page 26/47

STTCL Concept

2.3.5 sttcl::ConcurrentCompositeState<>

The ConcurrentCompositeState template class serves as base class for a composite state that
contains sttcl::Region<> implementations with orthogonal states. The implementation class
constructor must pass an array of sttcl::RegionBase<>* pointers to the
ConcurrentCompositeState constructor. The array must have the exact size as specified with the
NumOfRegions template parameter.

Template signature:
template
< class CompositeStateImpl
, class StateMachineImpl
, class IInnerState
, unsigned int NumOfRegions
, class EventArgs
, class StateBaseImpl
>
class ConcurrentCompositeState;

StateImpl specifies the inheriting class.

Page 27/47

Fig 8: Class diagram for sttcl::ConcurrentCompositeState<> and Region<>

STTCL Concept

StateMachineImpl specifies the containing state machine implemetation.
IInnerState specifies the internal state interface class.
NumOfRegions specifies the number of contained sttcl::Region<> implementation class instances.
EventArgs optionally specifies a class that is passed through the IInnerState interface methods.
StateBaseImpl optionally specifies a sttcl::State<> implementation base class.

The sttcl::ConcurrentCompositeState<> template base class implements the following main
operations:
initSubStateMachines()
Called to initialize a state's sub state machines.
finalizeSubStateMachines()
Called to finalize a state's sub state machines.
#broadcastEvent()
Called to queue events to the internal threads of the contained sttcl::Region<> implementation
class instances.

Additionally the main operations of the StateBaseImpl template parameter class are inherited.

Implementation hooks:
+entryImpl()
Overrides the default entry() behavior. An override should call the default implementation.
+startDoImpl()
Overrides the default startDo() behavior. An override should call the default implementation.
+endDoImpl()
Overrides the default endDo() behavior. An override should call the default implementation.
+exitImpl()
Overrides the default exit() behavior. An override should call the default implementation.
+initializeImpl()
Overrides the default initialze() behavior. An override should call the default implementation.
+finalizeImpl()
Overrides the default finalize() behavior. An override should call the default implementation.
+checkDirectTransitionImpl()
Overrides the default checkDirectTransitionImpl() behavior. An override should call the default
implementation.

2.3.6 sttcl::Region<>
The Region template class serves a base class for a region sub statemachine implementation. As
the diagram in Fig 8 shows the Region class inherits from both sttcl::CompositeState<> and the
sttcl::ActiveState<> class (as CompositeState StateBaseImpl) and thus their behaviors.

Template signature:
template
< class RegionImpl
, class StateMachineImpl
, class IInnerState
, class EventArgs
, sttcl::CompositeStateHistoryType::Values HistoryType
, class StateThreadType

Page 28/47

STTCL Concept

, class TimeDurationType
, class SemaphoreType
, class MutexType
, class EventQueueType
> class Region;

StateImpl specifies the inheriting class.
StateMachineImpl specifies the containing state machine implemetation.
IInnerState specifies the internal state interface class.
EventArgs optionally specifies a class that is passed through the IInnerState interface methods.
HistoryType optionally specifies a history pseudo-state.
StateThreadType specifies the thread class to implement the internal state thread.
TimeDurationType specifies the time duration representation implementation class.
EndDoActionSemaphoreType specifies the semaphore class to implement the semaphore that is
used to signal termination of the internal state thread.
ActiveStateMutexType specifies the mutex class used to provide thread safe access to the
sttcl::ActiveState<> class member variables.

The sttcl::Region<> template base class implements the following main operations:
#initSubStateMachines()
Called to initialize a state's sub state machines.
#finalizeSubStateMachines()
Called to finalize a state's sub state machines.
#changeState()
Called to change the containing state machines next state.
+changeState()
Called to change the internal state machines next state.
+subStateMachineCompleted()
Called to notify the implementation class that the CompositeState state machine is finalized.

Additionally the main operations of the StateBaseImpl and StateMachineBaseImpl template
parameter classes are inherited.

Implementation hooks:
+entryImpl()
Overrides the default entry() behavior. An override should call the default implementation.
+startDoImpl()
Overrides the default startDo() behavior. An override should call the default implementation.
+endDoImpl()
Overrides the default endDo() behavior. An override should call the default implementation.
+exitImpl()
Overrides the default exit() behavior. An override should call the default implementation.
+initSubStateMachinesImpl()
Overrides the default initSubStateMachines() behavior. An override should call the default
implementation.
+finalizeSubStateMachinesImpl()
Overrides the default finalizeSubStateMachines() behavior. An override should call the default
implementation.
+checkDirectTransitionImpl()

Page 29/47

STTCL Concept

Overrides the default checkDirectTransitionImpl() behavior. An override should call the default
implementation.
+subStateMachineCompletedImpl()
Overrides the default subStateMachineCompleted() behavior. An override should call the default
implementation.
+exitingDoActionImpl()
Overrides the default exitingDoActionImpl() behavior. This callback signals that the do action
execution has finished (Completion event).
+joinDoActionThreadImpl()
Overrides the default joinDoActionImpl() behavior. This callback implements the synchronization
point for the internal do action thread and the states outgoing transition. An override should call the
default implementation.
+unblockDoActionImpl()
Overrides the default unblockDoActionImpl() behavior. This callback allows an implementation to
unblock the internal do action thread and proceed with the states outgoing transition.

Page 30/47

STTCL Concept

2.4 STTCL configuration adapters

Page 31/47

Fig 9: Package diagram for STTCL namespaces

STTCL Concept

The configuration adapter classes are wrappers for build environment/OS specific abstractions used
by the STTCL template base classes. The optional Impl template parameter specifies the concrete
implementation base class of the wrapper class and can be configured generally using one of the
corresponding macro definitions described in 2.2.3Providing custom implementations for
concurrency.

2.4.1 sttcl::internal::SttclThread<>
The SttclThread class declares an abstraction for a thread implementation class.

Template signature:
template<class Impl = STTCL_DEFAULT_THREADIMPL>
class SttclThread;

Impl specifies the implementation class.

Type definitions:
typedef void* (*ThreadMethodPtr)(void*);

Required implementation interface:
Impl(ThreadMethodPtr argThreadMethod)
Constructor for implementation class.
bool run(void* args);
Runs the method passed in the constructor in a separate thread.
void join();
Waits blocking forever until the thread exits.

Page 32/47

Fig 10: Class diagram sttcl::SttclThread<>, sttcl::SttclMutex<>, sttcl::SttclSemaphore<> and
sttcl::TimeDuration<>

STTCL Concept

void detach();
Kills the thread.
static bool isSelf(const Impl& otherThread);
Checks if the calling method runs within the thread specified with the otherThread parameter.

2.4.2 sttcl::internal::SttclMutex<>
The SttclMutex class declares an abstraction for a mutex implementation class.

Template signature:
template
< class Impl = STTCL_DEFAULT_MUTEXIMPL
, class TimeDurationType = TimeDuration<STTCL_DEFAULT_TIMEDURATIONIMPL>
>
class SttclMutex;

Impl specifies the implementation class.
TimeDurationType specifies the time duration representation class to use.

Required implementation interface:
Impl()
Default constructor for implementation class.
void lock();
Locks the mutex. Waits blocking forever until the mutex becomes lockable.
bool try_lock(const TimeDurationType& timeout);
Tries to lock the mutex within the specified timeout parameter.
void unlock();
Unlocks the mutex.

2.4.3 sttcl::internal::SttclSemaphore<>
The SttclSemaphore class declares an abstraction for a semaphore implementation class.

Template signature:
template
< class Impl = STTCL_DEFAULT_MUTEXIMPL
, class TimeDurationType = TimeDuration<STTCL_DEFAULT_TIMEDURATIONIMPL>
>
class SttclSemaphore;

Impl specifies the implementation class.
TimeDurationType specifies the time duration representation class to use.

Required implementation interface:
Impl(unsigned int initialCount);
Constructor for implementation class.
void wait();
Waits blocking forever until the semaphore is incremented.
bool try_wait(const TimeDurationType& timeout);
Waits until the semaphore is incremented within the specified timeout duration.

Page 33/47

STTCL Concept

void post();
Increments the semaphore.

2.4.4 sttcl::TimeDuration<>
The TimeDuration class declares an abstraction for a time duration representation implementation
class.

Template signature:
template<class Implementation = STTCL_DEFAULT_TIMEDURATIONIMPL>
class TimeDuration;

Implementation specifies the implementation class.

Type definitions:
typedef typename Implementation::NativeTimeDuration NativeTimeDuration;

Required implementation interface:
Implementation(unsigned int argHours, unsigned int argMinutes, unsigned int
argSeconds, unsigned int argMilliSeconds, unsigned long argMicroSeconds, unsigned
long argNanoSeconds);
Constructor for implementation class.
Implementation(const Implementation& rhs);
Constructor for implementation class.
Implementation& operator=(const Implementation& rhs)
Assignment operator for class TimeDuration.
bool operator==(const Implementation& rhs) const
Equality comparison operator for implementation class.
bool operator!=(const Implementation& rhs) const;
Inequality comparison operator for implementation class.
bool operator<(const Implementation& rhs) const
Less comparison operator for implementation class.
bool operator<=(const Implementation& rhs) const
Less or equality comparison operator for implementation class.
bool operator>(const Implementation& rhs) const
Greater comparison operator for implementation class.
bool operator>=(const Implementation& rhs) const
Greater or equality comparison operator for implementation class.
Implementation& operator+=(const Implementation& rhs)
Adds the rhs time duration to this instance.
Implementation& operator-=(const Implementation& rhs)
Substracts the rhs time duration from this instance.
Implementation& operator*=(int factor)
Multiplies the time duration from of this instance with factor.
Implementation& operator/=(int divider)
Divides the time duration from of this instance by divider.
int hours() const
Gets the hours represented in this instance.
int minutes() const
Gets the minutes represented in this instance.

Page 34/47

STTCL Concept

int seconds() const
Gets the seconds represented in this instance.
int milliseconds() const
Gets the milliseconds represented in this instance.
int microseconds() const
Gets the microseconds represented in this instance.
int nanoseconds() const
Gets the nanoseconds represented in this instance.
void hours(int newHours)
Sets the hours represented in this instance.
void minutes(int newMinutes)
Sets the minutes represented in this instance.
void seconds(int newSeconds)
Sets the seconds represented in this instance.
void milliseconds(int newMilliSeconds)
Sets the milliseconds represented in this instance.
void microseconds(int newMicroSeconds)
Sets the microseconds represented in this instance.
void nanoseconds(int newNanoSeconds)
Sets the nanoseconds represented in this instance.
const NativeTimeDuration& getNativeValue() const
Gets the native time duration representation.

2.4.5 sttcl::EventQueue<>
The EventQueue class represents an abstraction for a thread safe queue to communicate events
between threads asynchronously. Currently the EventQueue class is used to dispatch event calls to
the State<> class instances contained in a Region<> to be executed in a separate thread.

Template signature:
template
< class T
, class TimeDurationType = TimeDuration<STTCL_DEFAULT_TIMEDURATIONIMPL>
, class SemaphoreType = SttclSemaphore<STTCL_DEFAULT_SEMAPHOREIMPL,TimeDurationType>
, class MutexType = SttclMutex<STTCL_DEFAULT_MUTEXIMPL,TimeDurationType>
, class InnerQueueType = STTCL_DEFAULT_DEQUEIMPL(T)
>
class EventQueue;

Page 35/47

STTCL Concept

3 STTCL Demo applications

3.1 Demo1
The demo1 Application shows how to setup a simple state machine using STTCL.

Page 36/47

Fig 11: Demo1 State diagram

STTCL Concept

3.2 Demo2
The demo2 Application shows using an ActiveState in the same state machine as used in demo1.

Page 37/47

Fig 12: Demo1 Application Class diagram

STTCL Concept

3.3 Demo3
The demo3 Application shows how to build composite states using STTCL.

Page 38/47

Fig 13: Demo2 State diagram

Fig 14: Demo3 State diagram

STTCL Concept

Page 39/47

STTCL Concept

3.4 Demo3a
The demo3a Application shows how to apply a shallow state history in a composite states using
STTCL.

Page 40/47

Fig 15: Demo3a State diagram

STTCL Concept

3.5 Demo3b
The demo3b Application shows how to apply a deep state history in a composite states using
STTCL.

Page 41/47

Fig 16: Demo3b State diagram

STTCL Concept

3.6 Demo4
The demo4 Application shows how to setup a concurrent composite state using STTCL.

3.7 Demo4a
The demo4a is basically the same as Demo4, but demonstrates how you can pass event arguments
with the event calls to the orthogonal regions.

The Demo4 and Demo4a have the problem, that the detection of the sub statemachine completion is
deferred until the main state machine receives another event. Have a look at Demo6 how to solve
this, by refactoring the main state machine to receive any events,- outer or inner -, asynchronously.

Page 42/47

Fig 17: Demo4 State diagram

STTCL Concept

3.8 Demo5
The demo5 Application shows how direct transitions can be handled using STTCL.

3.9 Demo5a
The demo5a Application shows how direct transitions can be guarded asynchronously.

3.10 Demo6
The demo6 Application shows how to setup a concurrent composite state using STTCL using an
asynchronous event signaling design for the main state machine. The state machine is the same as
in Demo4 and Demo4a, but the main state machine class DemoStateMachine runs its own internal

Page 43/47

Fig 18: Demo5 State diagram

Fig 19: Demo5a State diagram

STTCL Concept

thread to receive events either from input, or raised from internal (composite) states.

Page 44/47

STTCL Concept

4 Generation of STTCL State Machines using UML state diagrams

4.1 STTCL Sparx Enterprise Architect AddIn
There is an AddIn available for the Sparx Enterprise Architect UML modeling tool
available, that generates STTCL compliant UML class models from UML state
diagrams. Actually it does a model transformation from a master state machine
class and an interface definition for the state interface.

The AddIn is intended to be available under commercial license conditions and is
currently in beta release state. Please contact me directly (g-makulik@t-
online.de: STTCL EA AddIn Trial Request) for a (free) trial license. As
mentioned, it's in beta state and may contain errors. Feel free to report these
directly to the same mail address please.

4.2 Sparx Enterprise Architect Demo
This project demonstrates the various UML state diagram to STTCL classes and
behaviors mappings generated with the STTCL AddIn.

The generated classes will be shown in the EA_GeneratedDemo project that is
available from the public STTCL GitHub repository.

The original application and state machine diagrams are defined as follows:

Page 45/47

Fig 20: The EA_GeneratedDemo application

https://github.com/makulik/sttcl/tree/master/EAGenerated_Demo
mailto:g-makulik@t-online.de?subject=STTCL%20EA%20AddIn%20Trial%20Request
mailto:g-makulik@t-online.de?subject=STTCL%20EA%20AddIn%20Trial%20Request

STTCL Concept

The transformed class diagram is s.th. you'll not want to see in it's whole
complexity. But generating code from it gives you a reasonable STTCL based
framework for the state diagram.

Page 46/47

Fig 21: The UML state machine diagram defined for the DemoStateMachine class

STTCL Concept

Page 47/47

Fig 22: Transformed STTCL class diagram

	1 Overview
	1.1 The GoF State pattern
	1.2 Mapping UML State Machine notation elements

	2 Implementation Design
	2.1 Aspect Oriented Modelling of State Machines
	2.1.1 Composite state aspect
	2.1.2 Concurrency aspect
	2.1.3 Direct transition aspect

	2.2 Configuring the STTCL library
	2.2.1 Configuring STTCL STL dependency
	2.2.2 Configuring STTCL builtin concurrency implementations
	2.2.3 Providing custom implementations for concurrency

	2.3 STTCL Base Classes
	2.3.1 sttcl::StateMachine<>
	2.3.2 sttcl::State<>
	2.3.3 sttcl::ActiveState<>
	2.3.4 sttcl::CompositeState<>
	2.3.5 sttcl::ConcurrentCompositeState<>
	2.3.6 sttcl::Region<>

	2.4 STTCL configuration adapters
	2.4.1 sttcl::internal::SttclThread<>
	2.4.2 sttcl::internal::SttclMutex<>
	2.4.3 sttcl::internal::SttclSemaphore<>
	2.4.4 sttcl::TimeDuration<>
	2.4.5 sttcl::EventQueue<>

	3 STTCL Demo applications
	3.1 Demo1
	3.2 Demo2
	3.3 Demo3
	3.4 Demo3a
	3.5 Demo3b
	3.6 Demo4
	3.7 Demo4a
	3.8 Demo5
	3.9 Demo5a
	3.10 Demo6

	4 Generation of STTCL State Machines using UML state diagrams
	4.1 STTCL Sparx Enterprise Architect AddIn
	4.2 Sparx Enterprise Architect Demo

